Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Redetermination of ($6 R, 7 S, 9 S, 11 S$)-(-)-sparteinium monoperchlorate

Yong-Min Lee, ${ }^{\text {a }}$ Yoon-Bo Shim, ${ }^{\text {a }}$ Seung Jae Lee, ${ }^{\text {b }}$ Sung Kwon Kang ${ }^{\text {b }}$ and Sung-Nak Choi ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Pusan 609-735, South Korea, and ${ }^{\mathbf{b}}$ Department of Chemistry, Chungnam National University, Daejeon 305-764, South Korea
Correspondence e-mail: yomlee@pusan.ac.kr

Received 18 October 2002
Accepted 8 November 2002
Online 26 November 2002
The structure of the title compound, $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{ClO}_{4}^{-}$, consists of a monoprotonated sparteinium cation and a perchlorate anion. The two tertiary N atoms of the cation, one perchlorate O atom and a H atom form a bifurcated hydrogen bond, the four hydrogen-bonding atoms being nearly in the same plane.

Comment

The crystal structure of sparteinium monoperchlorate, (I), has been determined previously (Borovyak et al., 1973). However, the refinement of the structure was not complete and the structural data collected were very limited; the H -atom and $\mathrm{ClO}_{4}{ }^{-}$positions were not determined. We redetermined the crystal structure of (I) for two reasons: (i) there is a need for the complete and well refined crystal structure of (- -sparteine in order to understand the structural features of many previously reported metal sparteine complexes (Kim et al., 2001; Kuroda \& Mason, 1979; Lee et al., 1998, 2000, 2002; Lopez et al., 1998; Motevalli et al., 1993) and (ii) compound (I) has attracted research attention and has been intensively utilized in medicinal chemistry (Cady et al., 1977) and asymmetric synthesis (Beak et al., 1996; Kretchmer, 1972; Mason \& Peacock, 1973).

(I)

The neutral dialkaloid sparteine structure is composed of four rings, two of which (A and B, see Scheme below) form a double-chair trans-quinolizidine system, which is relatively resistant to conformational-configurational change upon protonation. However, the second system of rings (C and D) is much more susceptible to inversion on an N -donor atom (N16), and inversion may occur in a trans-boat-chair or cis-double-chair conformation. The outer rings (A and D) are
directed upward (cis) or downward (trans) with respect to the methylene bridge, i.e. the H atoms on C 6 and C 11 are in transtrans or cis-cis positions, respectively. The conformation and configuration of the spartenium cation in (I) was found to be the same as reported previously (Borovyak et al., 1973).

Based on ${ }^{13}$ C NMR and IR studies, Boczon \& Koziol (1997) suggested that sparteine and its isomers and derivatives can undergo conformational-configurational rearrangements in solution. It is well known that, in the case of the monoprotonated base, viz. $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}_{2}{ }^{+}$, in solution, a tautomeric equilibrium takes place, with the contributions of cations $\mathrm{N} 1^{+}-\mathrm{H} 1 \cdots \mathrm{~N} 16$ and $\mathrm{N} 1 \cdots \mathrm{H} 1-\mathrm{N} 16^{+}$being in the ratio 1:1.25 (Boczon \& Koziol, 1997). However, in the solid state, the H atom bonds to atom N 1 and the compound crystallizes exclusively in the N1-H1 $\cdots \mathrm{N} 16$ tautomeric form (Fig. 1 and Table 1). The H atom also interacts with perchlorate atom O 2 to form a rare three-centered hydrogen bond (bifurcated hydrogen bonding), as shown in Fig. 1. The four hydrogenbonding atoms ($\mathrm{N} 1, \mathrm{~N} 16, \mathrm{H} 1$ and O 2) are nearly in the same plane; the sum of the three angles $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 16$, $\mathrm{N} 1-$ $\mathrm{H} 1 \cdots \mathrm{O} 2$ and $\mathrm{N} 16 \cdots \mathrm{H} 1 \cdots \mathrm{O} 2$ is approximately 358°. Atom H1 on protonated atom N 1 is axial relative to rings A and B, as is usually observed (Boczon \& Koziol, 1997). The N1‥N16 distance is 2.755 (5) \AA, which is considerably less than the sum of the van der Waals radii of $3.16 \AA$ and confirms the participation of the two N atoms in a bifurcated intramolecular hydrogen bond (Table 2).

The (-)-sparteine conformation in metal(II) (-)-sparteine complexes is almost identical to the conformations in free and monoprotonated (-)-sparteine. In the metal complexes, there is a relationship between the $\mathrm{N}-M-\mathrm{N}$ bite angle and $M-\mathrm{N}$ distance, i.e. the $\mathrm{N}-M-\mathrm{N}$ bite angle decreases as the $M-\mathrm{N}$

Figure 1
A view (Farrugia, 1997) showing the atom labelling and the hydrogen bonding (dashed lines) in (I); ellipsoids are at the 30% probability level [symmetry code: (i) $\frac{1}{2}+x, \frac{1}{2}-y, 1-z$].
bond length increases and vice versa (Lee et al., 2002). In fact, the $\mathrm{N}-M-\mathrm{N}$ bite angle in metal(II) $(-)$-sparteine complexes affects the $\mathrm{N} \cdots \mathrm{N}$ distance of the coordinated (-)-sparteine ligand. The N1 $\cdots \mathrm{N} 16$ distance in (I) is shorter than corresponding distances observed in the metal complexes due to the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond and the cation size.

Experimental

The precursor complex $\left[\mathrm{Cu}\left(\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}\right)\left(\mathrm{ClO}_{4}\right)_{2}\right]$ was prepared by mixing a solution of copper(II) perchlorate in ethanol-triethylorthoformate $(3: 1 \mathrm{v} / \mathrm{v})$ with a stoichiometric amount of $(-)-l$-sparteine, viz. ($6 R, 7 S, 9 S, 11 S$) $-\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}$. The resulting dark-blue solution was added to a stoichiometric amount of potassium fluoride. CuF_{2} salts immediately precipitated and were removed from the solution by filtration. Single crystals of (I) were obtained by slow evaporation of the solution at room temperature. Analysis calculated for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{4}$: C 53.81, H 8.13, N 8.37\%; found: C 53.63, H 8.00, N 8.34\%.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{ClO}_{4}{ }^{-}$
$M_{r}=334.84$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.029$ (2) \AA
$b=13.4196$ (16) \AA
$c=15.3094(16) \AA$
$V=1649.6$ (5) \AA^{3}
$Z=4$
$D_{x}=1.348 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
Non-profiled $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.887, T_{\text {max }}=0.926$
2438 measured reflections
2402 independent reflections
1559 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0533 P)^{2}\right.$

$$
+0.3075 P]
$$

where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 232 Friedel pairs
Flack parameter $=0.00(13)$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.128$
$S=1.02$
2402 reflections
203 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& R_{\text {int }}=0.012 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-1 \rightarrow 10 \\
& k=0 \rightarrow 17 \\
& l=0 \rightarrow 19 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 300 \text { min } \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=11.3-14.1^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.33 \times 0.30 \times 0.30 \mathrm{~mm}$

The positional parameters of the H atoms were calculated geometrically $(\mathrm{C}-\mathrm{H}=0.96-0.98 \AA)$ and these atoms were constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{CH}$ and CH_{2}). The H atom on N 1 was located in a difference map and refined isotropically.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Table 1
Selected geometric parameters ($\AA,^{\circ}$).

$\mathrm{N} 1-\mathrm{C} 2$	$1.500(5)$	$\mathrm{N} 16-\mathrm{C} 17$	$1.469(5)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.512(5)$	$\mathrm{Cl}-\mathrm{O} 1$	$1.423(3)$
$\mathrm{N} 1-\mathrm{C} 10$	$1.506(5)$	$\mathrm{Cl}-\mathrm{O} 2$	$1.423(4)$
$\mathrm{N} 16-\mathrm{C} 11$	$1.475(5)$	$\mathrm{Cl}-\mathrm{O} 3$	$1.439(4)$
$\mathrm{N} 16-\mathrm{C} 15$	$1.479(5)$	$\mathrm{Cl}-\mathrm{O} 4$	$1.406(4)$
C2-N1-C6	$112.2(3)$	$\mathrm{C} 11-\mathrm{N} 16-\mathrm{C} 17$	$112.7(3)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 10$	$109.9(3)$	$\mathrm{C} 15-\mathrm{N} 16-\mathrm{C} 17$	$113.0(3)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 10$	$112.2(3)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$107.5(4)$
$\mathrm{C} 11-\mathrm{N} 16-\mathrm{C} 15$	$110.8(3)$		

Table 2
Hydrogen-bonding geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.84(4)$	$2.54(4)$	$3.155(6)$	$130(4)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 16$	$0.84(4)$	$2.13(5)$	$2.755(5)$	131 (4)

Symmetry code: (i) $\frac{1}{2}+x, \frac{1}{2}-y, 1-z$.

This study was supported by a grant from the Korea Health 21 R\&D Project (No. 01-PJ11-PG9-01BT00A-0014), Ministry of Health \& Welfare, Republic of Korea.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1088). Services for accessing these data are described at the back of the journal.

References

Beak, P., Basu, A., Gallagher, D. J., Park, Y. S. \& Thayumanavan, S. (1996). Acc. Chem. Res. 29, 552-560.
Boczon, W. \& Koziol, B. (1997). J. Mol. Struct. 403, 171-181.
Borovyak, T. E., Bokii, N. G. \& Struchkov, Yu. T. (1973). Zh. Strukt. Khim. 14, 387-388.
Cady, W. A., Boschmann, E., Choi, R. S., Heidelman, J. F. \& Smith, S. L. (1977). Inorg. Chem. 16, 1958-1961.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Kim, Y.-J., Kim, S.-O., Kim, Y.-I. \& Choi, S.-N. (2001). Inorg. Chem. 40, 44814484.

Kretchmer, R. A. (1972). J. Org. Chem. 37, 2744-2747.
Kuroda, R. \& Mason, S. F. (1979). J. Chem. Soc. Dalton Trans. pp. 727-730.
Lee, Y.-M., Choi, S.-N., Suh, I.-H. \& Bereman, R. D. (1998). Acta Cryst. C54, 1582-1584.
Lee, Y.-M., Chung, G., Kwon, M.-A. \& Choi, S.-N. (2000). Acta Cryst. C56, 6768.

Lee, Y.-M., Kang, S. K., Kim, Y.-I. \& Choi, S.-N. (2002). Acta Cryst. C58, m453m454.
Lopez, S., Muravyov, I., Pulley, S. R. \& Keller, S. W. (1998). Acta Cryst. C54, 355-357.
Mason, S. F. \& Peacock, R. D. (1973). J. Chem. Soc. Dalton Trans. pp. 226-228.
Motevalli, M., O'Brien, P., Robinson, A. J., Walsh, J. R. \& Wyatt, P. B. (1993). J. Organomet. Chem. 461, 5-7.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

