Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Redetermination of (6*R***,**7*S***,**9*S***,**11*S*)-(–)-sparteinium monoperchlorate

Yong-Min Lee,^a* Yoon-Bo Shim,^a Seung Jae Lee,^b Sung Kwon Kang^b and Sung-Nak Choi^a

^aDepartment of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Pusan 609-735, South Korea, and ^bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, South Korea Correspondence e-mail: yomlee@pusan.ac.kr

Received 18 October 2002 Accepted 8 November 2002 Online 26 November 2002

The structure of the title compound, $C_{15}H_{27}N_2^+ \cdot ClO_4^-$, consists of a monoprotonated sparteinium cation and a perchlorate anion. The two tertiary N atoms of the cation, one perchlorate O atom and a H atom form a bifurcated hydrogen bond, the four hydrogen-bonding atoms being nearly in the same plane.

Comment

The crystal structure of sparteinium monoperchlorate, (I), has been determined previously (Borovyak *et al.*, 1973). However, the refinement of the structure was not complete and the structural data collected were very limited; the H-atom and ClO_4^- positions were not determined. We redetermined the crystal structure of (I) for two reasons: (i) there is a need for the complete and well refined crystal structure of (–)-sparteine in order to understand the structural features of many previously reported metal sparteine complexes (Kim *et al.*, 2001; Kuroda & Mason, 1979; Lee *et al.*, 1998, 2000, 2002; Lopez *et al.*, 1998; Motevalli *et al.*, 1993) and (ii) compound (I) has attracted research attention and has been intensively utilized in medicinal chemistry (Cady *et al.*, 1977) and asymmetric synthesis (Beak *et al.*, 1996; Kretchmer, 1972; Mason & Peacock, 1973).

The neutral dialkaloid sparteine structure is composed of four rings, two of which (A and B, see *Scheme* below) form a double-chair *trans*-quinolizidine system, which is relatively resistant to conformational–configurational change upon protonation. However, the second system of rings (C and D) is much more susceptible to inversion on an N-donor atom (N16), and inversion may occur in a *trans*-boat–chair or *cis*-double-chair conformation. The outer rings (A and D) are

directed upward (*cis*) or downward (*trans*) with respect to the methylene bridge, *i.e.* the H atoms on C6 and C11 are in *trans*-*trans* or *cis*-*cis* positions, respectively. The conformation and configuration of the spartenium cation in (I) was found to be the same as reported previously (Borovyak *et al.*, 1973).

Based on ¹³C NMR and IR studies, Boczon & Koziol (1997) suggested that sparteine and its isomers and derivatives can undergo conformational-configurational rearrangements in solution. It is well known that, in the case of the monoprotonated base, viz. C15H27N2+, in solution, a tautomeric equilibrium takes place, with the contributions of cations $N1^+$ -H1···N16 and N1···H1-N16⁺ being in the ratio 1:1.25 (Boczon & Koziol, 1997). However, in the solid state, the H atom bonds to atom N1 and the compound crystallizes exclusively in the N1-H1···N16 tautomeric form (Fig. 1 and Table 1). The H atom also interacts with perchlorate atom O2 to form a rare three-centered hydrogen bond (bifurcated hydrogen bonding), as shown in Fig. 1. The four hydrogenbonding atoms (N1, N16, H1 and O2) are nearly in the same plane; the sum of the three angles N1-H1···N16, N1- $H1 \cdots O2$ and $N16 \cdots H1 \cdots O2$ is approximately 358°. Atom H1 on protonated atom N1 is axial relative to rings A and B, as is usually observed (Boczon & Koziol, 1997). The N1···N16 distance is 2.755 (5) Å, which is considerably less than the sum of the van der Waals radii of 3.16 Å and confirms the participation of the two N atoms in a bifurcated intramolecular hydrogen bond (Table 2).

The (-)-sparteine conformation in metal(II) (-)-sparteine complexes is almost identical to the conformations in free and monoprotonated (-)-sparteine. In the metal complexes, there is a relationship between the N-M-N bite angle and M-N distance, *i.e.* the N-M-N bite angle decreases as the M-N

Figure 1

A view (Farrugia, 1997) showing the atom labelling and the hydrogen bonding (dashed lines) in (I); ellipsoids are at the 30% probability level [symmetry code: (i) $\frac{1}{2} + x$, $\frac{1}{2} - y$, 1 - z].

bond length increases and vice versa (Lee et al., 2002). In fact, the N-M-N bite angle in metal(II) (-)-sparteine complexes affects the $N \cdots N$ distance of the coordinated (-)-sparteine ligand. The $N1\cdots N16$ distance in (I) is shorter than corresponding distances observed in the metal complexes due to the intramolecular $N-H\cdots N$ hydrogen bond and the cation size.

Experimental

The precursor complex $[Cu(C_{15}H_{26}N_2)(ClO_4)_2]$ was prepared by mixing a solution of copper(II) perchlorate in ethanol-triethylorthoformate (3:1 ν/ν) with a stoichiometric amount of (-)-*l*-sparteine, *viz*. (6*R*,7*S*,9*S*,11*S*)-C₁₅H₂₆N₂. The resulting dark-blue solution was added to a stoichiometric amount of potassium fluoride. CuF₂ salts immediately precipitated and were removed from the solution by filtration. Single crystals of (I) were obtained by slow evaporation of the solution at room temperature. Analysis calculated for C₁₅H₂₇ClN₂O₄: C 53.81, H 8.13, N 8.37%; found: C 53.63, H 8.00, N 8.34%.

> Mo $K\alpha$ radiation Cell parameters from 25

reflections

 $\mu = 0.25 \text{ mm}^{-1}$ T = 293 (2) K Block, yellow $0.33 \times 0.30 \times 0.30 \text{ mm}$

 $\theta = 11.3 - 14.1^{\circ}$

 $R_{\rm int}=0.012$

 $\theta_{\max} = 27.5^{\circ}$ $h = -1 \rightarrow 10$

 $k = 0 \rightarrow 17$

 $l = 0 \rightarrow 19$

3 standard reflections

frequency: 300 min

intensity decay: 1%

Crystal data

$C_{15}H_{27}N_2^+ \cdot ClO_4^-$
$M_r = 334.84$
Orthorhombic, P2 ₁ 2 ₁ 2 ₁
a = 8.029 (2) Å
b = 13.4196 (16) Å
c = 15.3094 (16) Å
$V = 1649.6 (5) \text{ Å}^3$
Z = 4
$D_x = 1.348 \text{ Mg m}^{-3}$

Data collection

Enraf–Nonius CAD-4 diffractometer Non-profiled $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.887, T_{max} = 0.926$ 2438 measured reflections 2402 independent reflections 1559 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0533P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.052$	+ 0.3075P]
$wR(F^2) = 0.128$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
2402 reflections	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
203 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Absolute structure: Flack (1983),
independent and constrained	232 Friedel pairs
refinement	Flack parameter = $0.00(13)$

The positional parameters of the H atoms were calculated geometrically (C–H = 0.96–0.98 Å) and these atoms were constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(CH \text{ and } CH_2)$. The H atom on N1 was located in a difference map and refined isotropically.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Table 1

Selected geometric parameters (Å, °).

N1-C2	1.500 (5)	N16-C17	1.469 (5)
N1-C6	1.512 (5)	Cl-O1	1.423 (3)
N1-C10	1.506 (5)	Cl-O2	1.423 (4)
N16-C11	1.475 (5)	Cl-O3	1.439 (4)
N16-C15	1.479 (5)	Cl-O4	1.406 (4)
C2-N1-C6	112.2 (3)	C11-N16-C17	112.7 (3)
C2-N1-C10	109.9 (3)	C15-N16-C17	113.0 (3)
C6-N1-C10	112.2 (3)	C7-C8-C9	107.5 (4)
C11-N16-C15	110.8 (3)		
C2-N1-C6 C2-N1-C10 C6-N1-C10 C11-N16-C15	112.2 (3) 109.9 (3) 112.2 (3) 110.8 (3)	C11-N16-C17 C15-N16-C17 C7-C8-C9	11 11 10

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O2^i$	0.84 (4)	2.54 (4)	3.155 (6)	130 (4)
$N1 - H1 \cdot \cdot \cdot N16$	0.84 (4)	2.13 (5)	2.755 (5)	131 (4)

Symmetry code: (i) $\frac{1}{2} + x, \frac{1}{2} - y, 1 - z$.

This study was supported by a grant from the Korea Health 21 R&D Project (No. 01-PJ11-PG9-01BT00A-0014), Ministry of Health & Welfare, Republic of Korea.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1088). Services for accessing these data are described at the back of the journal.

References

- Beak, P., Basu, A., Gallagher, D. J., Park, Y. S. & Thayumanavan, S. (1996). Acc. Chem. Res. 29, 552–560.
- Boczon, W. & Koziol, B. (1997). J. Mol. Struct. 403, 171-181.
- Borovyak, T. E., Bokii, N. G. & Struchkov, Yu. T. (1973). Zh. Strukt. Khim. 14, 387–388.
- Cady, W. A., Boschmann, E., Choi, R. S., Heidelman, J. F. & Smith, S. L. (1977). Inorg. Chem. 16, 1958–1961.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Kim, Y.-J., Kim, S.-O., Kim, Y.-I. & Choi, S.-N. (2001). Inorg. Chem. 40, 4481– 4484.
- Kretchmer, R. A. (1972). J. Org. Chem. 37, 2744-2747.
- Kuroda, R. & Mason, S. F. (1979). J. Chem. Soc. Dalton Trans. pp. 727-730.
- Lee, Y.-M., Choi, S.-N., Suh, I.-H. & Bereman, R. D. (1998). Acta Cryst. C54, 1582–1584.
- Lee, Y.-M., Chung, G., Kwon, M.-A. & Choi, S.-N. (2000). Acta Cryst. C56, 67–68.
- Lee, Y.-M., Kang, S. K., Kim, Y.-I. & Choi, S.-N. (2002). Acta Cryst. C58, m453– m454.
- Lopez, S., Muravyov, I., Pulley, S. R. & Keller, S. W. (1998). Acta Cryst. C54, 355–357.
- Mason, S. F. & Peacock, R. D. (1973). J. Chem. Soc. Dalton Trans. pp. 226–228. Motevalli, M., O'Brien, P., Robinson, A. J., Walsh, J. R. & Wyatt, P. B. (1993). J. Organomet. Chem. 461, 5–7.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.